Source code for protomotions.utils.torch_utils

# SPDX-FileCopyrightText: Copyright (c) 2025 The ProtoMotions Developers
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""PyTorch utility functions.

Includes helper functions for gradient computation, tensor conversion, and seeding.
"""

import os
import random
import numpy as np
import torch


[docs] def grad_norm(params): """Compute L2 norm of gradients across all parameters. Args: params: List of parameters with gradients. Returns: Scalar tensor with gradient norm. """ grad_norm = 0.0 for p in params: if p.grad is not None: grad_norm += torch.sum(p.grad**2) return torch.sqrt(grad_norm)
[docs] def to_torch( x, dtype=torch.float, device="cuda:0", requires_grad=False ) -> torch.Tensor: """Convert data to PyTorch tensor with specified dtype and device. Args: x: Data to convert. dtype: PyTorch data type. device: Target device. requires_grad: Whether tensor requires gradients. Returns: PyTorch tensor. """ return torch.tensor(x, dtype=dtype, device=device, requires_grad=requires_grad)
[docs] def seeding(seed=0, torch_deterministic=False): """Set random seeds for reproducibility. Args: seed: Integer seed value. torch_deterministic: If True, configure PyTorch for deterministic execution. Returns: The seed used. """ print("Setting seed: {}".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) if torch_deterministic: # refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.use_deterministic_algorithms(True) else: torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False return seed