protomotions.agents.evaluators.mimic_evaluator module

class protomotions.agents.evaluators.mimic_evaluator.MimicEvaluator(agent, fabric, config)[source]

Bases: BaseEvaluator

Evaluator for Mimic agent’s motion tracking performance.

__init__(agent, fabric, config)[source]

Initialize the Mimic evaluator.

Parameters:
  • agent (Any) – The Mimic agent to evaluate

  • fabric (Any) – Lightning Fabric instance for distributed training

property motion_lib: MotionLib

Motion library (from agent).

property num_envs: int

Number of environments (from agent).

property motion_manager: MimicMotionManager

Motion manager (from env).

initialize_eval()[source]

Initialize metrics dictionary with required keys.

Returns:

Dictionary of initialized MotionMetrics

Return type:

Dict

run_evaluation(metrics)[source]

Run evaluation across multiple motions.

Parameters:

metrics (Dict) – Dictionary to collect evaluation metrics

evaluate_episode(metrics, active_env_ids, active_motion_ids)[source]

Evaluate a single episode for a batch of motions.

Resets the environment with the specified motions and steps through the episode until completion or max steps, accumulating metrics.

Parameters:
  • metrics (Dict) – Dictionary to collect evaluation metrics.

  • active_env_ids (MockTensor) – Tensor of environment IDs to use for this batch.

  • active_motion_ids (MockTensor) – Tensor of motion IDs to evaluate in these environments.

add_extra_obs_to_agent(obs)[source]
update_metrics_from_env_extras(metrics, extras, active_env_ids, active_motion_ids)[source]

Update metrics from env.extras.

Parameters:
  • metrics (Dict) – Dictionary to update with metrics

  • extras (Dict) – Dictionary of extra information from environment step

  • motion_ids – Tensor of motion IDs being evaluated

process_eval_results(metrics)[source]

Process results and check for early termination.

Parameters:

metrics (Dict) – Dictionary of collected metrics

Returns:

  • Dict of processed metrics for logging

  • Optional score value for determining best model

Return type:

Tuple containing

cleanup_after_evaluation()[source]

Clean up after evaluation (reset env state, etc.)

simple_test_policy(collect_metrics=False)[source]

Evaluates the policy in evaluation mode.

Parameters:
  • collect_metrics (bool) – whether to collect metrics from the evaluation

  • True (Will print the metrics to the console if collect_metrics is)