Source code for protomotions.agents.utils.step_tracker
# SPDX-FileCopyrightText: Copyright (c) 2025 The ProtoMotions Developers
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from torch import Tensor, nn
[docs]
class StepTracker(nn.Module):
steps: Tensor
[docs]
def __init__(
self, num_envs: int, min_steps: int, max_steps: int, device: torch.device
):
super().__init__()
self.register_buffer(
"steps", torch.zeros(num_envs, dtype=torch.long), persistent=False
)
self.register_buffer(
"cur_max_steps", torch.zeros(num_envs, dtype=torch.long), persistent=False
)
self.num_envs = num_envs
self.min_steps = min_steps
self.max_steps = max_steps
self.to(device)
[docs]
def advance(self):
self.steps += 1
[docs]
def done_indices(self):
return torch.nonzero(
torch.greater_equal(self.steps, self.cur_max_steps), as_tuple=False
).squeeze(-1)
[docs]
def reset_steps(self, env_ids: Tensor = None):
if env_ids is None:
env_ids = torch.arange(
0, self.num_envs, device=self.device, dtype=torch.long
)
n = len(env_ids)
self.steps[env_ids] = 0
self.cur_max_steps[env_ids] = torch.randint(
self.min_steps,
self.max_steps,
size=[n],
dtype=torch.long,
device=self.device,
)
[docs]
def shift_counter(self, env_ids: Tensor, shift: Tensor):
self.steps[env_ids] -= shift
self.cur_max_steps[env_ids] -= shift
@property
def device(self) -> torch.device:
"""Get device from registered buffers."""
return self.steps.device