Source code for protomotions.agents.ppo.config

# SPDX-FileCopyrightText: Copyright (c) 2025 The ProtoMotions Developers
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Configuration classes for PPO agent.

This module defines all configuration dataclasses for the Proximal Policy Optimization (PPO)
algorithm, including actor-critic architecture parameters, optimization settings, and
training hyperparameters.

Key Classes:
    - PPOAgentConfig: Main PPO agent configuration
    - PPOModelConfig: PPO model (actor-critic) configuration
    - PPOActorConfig: Policy network configuration
    - AdvantageNormalizationConfig: Advantage normalization settings
"""

from dataclasses import dataclass, field
from typing import List, Optional
from protomotions.utils.config_builder import ConfigBuilder
from protomotions.agents.common.config import (
    SequentialModuleConfig,
    # TransformerConfig
)
from protomotions.agents.base_agent.config import (
    OptimizerConfig,
    BaseAgentConfig,
    BaseModelConfig,
)


[docs] @dataclass class PPOActorConfig(ConfigBuilder): """Configuration for PPO Actor network.""" mu_key: str # The key of the output of the mu model in_keys: List[str] = field(default_factory=list) out_keys: List[str] = field( default_factory=lambda: ["action", "mean_action", "neglogp"] ) _target_: str = "protomotions.agents.ppo.model.PPOActor" # mu_model: Union[TransformerConfig, MultiHeadedMLPConfig, DictConfig, Dict] = field(default_factory=MultiHeadedMLPConfig) mu_model: SequentialModuleConfig = field(default_factory=SequentialModuleConfig) num_out: int = None # Will be set based on robot.number_of_actions actor_logstd: float = -2.9
[docs] @dataclass class PPOModelConfig(BaseModelConfig): """Configuration for PPO Model (Actor-Critic).""" _target_: str = "protomotions.agents.ppo.model.PPOModel" out_keys: List[str] = field( default_factory=lambda: ["action", "mean_action", "neglogp", "value"] ) actor: PPOActorConfig = field(default_factory=PPOActorConfig) # critic: Union[TransformerConfig, MultiHeadedMLPConfig, DictConfig, Dict] = field(default_factory=MultiHeadedMLPConfig) critic: SequentialModuleConfig = field(default_factory=SequentialModuleConfig) actor_optimizer: OptimizerConfig = field( default_factory=lambda: OptimizerConfig(lr=2e-5) ) critic_optimizer: OptimizerConfig = field( default_factory=lambda: OptimizerConfig(lr=1e-4) )
[docs] @dataclass class AdvantageNormalizationConfig(ConfigBuilder): """Configuration for advantage normalization.""" enabled: bool = True shift_mean: bool = True # EMA parameters use_ema: bool = True ema_alpha: float = 0.05 # EMA weight for new data min_std: float = 0.02 # Safety minimum std to prevent extreme normalization clamp_range: float = ( 4.0 # Clamp normalized advantages (z-scores) to [-clamp_range, clamp_range] )
[docs] @dataclass class PPOAgentConfig(BaseAgentConfig): """Main configuration class for PPO Agent.""" _target_: str = "protomotions.agents.ppo.agent.PPO" # Model configuration model: PPOModelConfig = field(default_factory=PPOModelConfig) # PPO hyperparameters tau: float = 0.95 e_clip: float = 0.2 clip_critic_loss: bool = True # Actor update control actor_clip_frac_threshold: Optional[float] = ( 0.6 # Skip actor update if clip_frac > threshold (e.g., 0.5) ) # Value normalization advantage_normalization: AdvantageNormalizationConfig = field( default_factory=AdvantageNormalizationConfig )